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Incoherent energy transfer within light-harvesting complexes
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Abstract. Rate equations are used to model spectroscopic observation of incoherent energy transfer in
light-harvesting antenna systems based upon known structures. A two-parameter two-dimensional model
is proposed. The transfer rates obtained, by matching the fluorescent decay, are self-consistent within our
model.

PACS. 87.10.+e General theory and mathematical aspects – 36.40.Mr Spectroscopy and geometrical
structure of clusters – 87.15.Mi Spectra, photodissociation, and photoionization; luminescence

1 Introduction

We have had a reasonably complete picture of the bac-
terial light-harvesting (LH) system recently [1,2]. Both
the inner antenna, LH1, and the outer antenna, LH2, are
assembled from the same modules to form rings. Each
module consists of two short α-helical polypeptides co-
ordinate one carotenoid and three bacteriochlorophylls
(BChls). The LH2 is composed of 9 units, for Rhodopseu-
domonas acidophila [3], resemble a cylinder, with an inner
diameter 36Å and an outer diameter 68Å, while the LH1
is composed of 16 units, for Rhodospirillum rubrum [4],
in order to accommodate the reaction center (RC). The
later has an outer diameter 116Å and a central diameter
68Å. However, the exact numbers of both complexes are
variable [1,4,5].

Furthermore, the LH2 B850 BChl a form a complete
over-lapping ring in a hydrophobic environment, which re-
duces the dielectric constant, while the B800 BChl a are
well separated and are in a polar environment. When a
BChl molecule is excited by light, the energy can reach
equilibrium within about 10 ps [6]. A LH2 can function as
a storage ring to store the excited singlet state energy for
about 1100 ps. However, the energy will transfer to other
rings before decaying. The hopping of energy continues
from one ring to another one until a LH1, which contains
the RC, is finally reached. The total trip lasts for about
5 to 50 ps [3,7,9]. Apparently, there is a competition be-
tween energy relaxation and energy transfer.

Historically, relatively few physicists have tackled
problems of photosynthesis. Notably, Montroll used ran-
dom walk concepts to model energy transfer amongst an-
tenna rings on a lattice by considering its first passage
time [10]. Later, Hemenger et al. proposed a more real-
istic model by taking inhomogeneous transfer rates and
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trapping of RCs into account [11]. Interestingly, it is Pearl-
stein’s work which is most often cited in the literature [12].
In the mean time, almost all experimentalists try to find
some explanations for their spectral data. However, due
to lack of precise geometrical information most efforts are
in vain.

Progresses in physics are often made along the line
structures-energy-dynamics. A goal of researches nowa-
days is to find the relation between structural and spectral
information obtained, expecting that the function of pho-
tosynthesis will be explained in terms of its structure, and
further drawing inferences from the model by applying
methods of mathematical or numerical analysis. Recently
Timpmann et al. used a rate equation model to describe
energy trapping and detrapping by the RC [13]. However,
their antenna has no structure. Skála et al. also carried
out a series of investigation by analyzing the spectrum of
a more realistic LH1 model [14–16]. However, their model
is incompatible with the recent structural finding. In this
paper we established a two-parameter model based on re-
cent structural data.

2 Model

With the known periodical structure, shown in Figure 1,
we can built, from chemical rate equation, the following
phenomenological model of energy transfer,

dE
dt

= k′A1 − (k′′ + kE)E, (1)

dA1

dt
= kA16 − 2kA1 + kA2 − k′A1 + k′′E, (2)

dAn
dt

= kAn−1 − 2kAn + kAn+1, n = 2...15, (3)

dA16

dt
= kA15 − 2kA16 + kA1, (4)
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Fig. 1. Schematic plot of LH1 and definition of symbols used.

in which Ans denote the excited BChl dimer, E ≡ P ∗BH
is the excited state, with B representing the chlorophyll
monomer within the RC, and P ∗ is the excited special
pair of BChl molecules. It is a set of 17 coupled linear dif-
ferential equations. The symmetry of this system is bro-
ken due to k′ 6= k′′. A similar model has been proposed
by Skála et al. [15]. However, the RC and the antenna
ring are connected only at one site in the present model,
corresponding to the recent experimental observation.

In the homogeneous case with the same transition rate
amongst the units, the characteristic polynomial of the
above rate-constant-matrix can always be expressed as

P16 = P 1
16P

2
16P

3
16P

4
16, (5)

with

P 1
16 = s+ 2k, (6)

P 2
16 = s2 + 4ks+ 2k2, (7)

P 3
16 = s4 + 8ks3 + 20k2s2 + 16k3s+ 2k4, (8)

P 4
16 = s10 + (kE + k′′ + k′ + 18k)s9

+ (k′kE + 18kkE + 18kk′′ + 16kk′ + 134k2)s8

+ 2(8k′kE + 67kkE + 67kk′′ + 52kk′ + 266k2)ks7

+2(52k′kE+266kkE+266kk′′+176kk′+605k2)k2s6

+2(176k′kE+605kkE+605kk′′+330kk′+786k2)k3s5

+12(55k′kE+131kkE+131kk′′+56kk′+91k2)k4s4

+4(168k′kE+273kkE+273kk′′+84kk′+86k2)k5s3

+ 8(42k′kE + 43kkE + 43kk′′ + 8kk′ + 4k2)k6s2

+ 2(32k′kE + 16kkE + 16kk′′ + kk′)k7s+ 2k8k′kE ,
(9)

which is a consequence of the master equation used, and
is independent of the detail geometrical symmetry. The
mode controlling the decay to the RC is within P 4

16, since
P 1

16, P 2
16, P 3

16 do not contain k′, k′′ and kE . However, all
four parts will be influenced by the change of k. If one
solves this set of differential equations by applying the
Laplace transformation method, one finds the solution di-
vides into four distinct groups of decay channels, namely,
A5-A13; E-A1-A9; A3-A7-A11-A15; A2-A4-A6-A8-A10-A12-
A14-A16. Because the matrix of rate constants is Hermi-
tian, all eigenvalues are negative. Furthermore, no eigen-
values are degenerated, in contrast to Skála’s model which

posses too high degree of symmetry [16]. Letting k′ = k′′

does not results in additional factorizability although the
symmetry of our model is restored. At k′ = k′′ = 0, P16

becomes

s(s+ 2k)2(s+ 4k)(s+ kE)(s2 + 4ks+ 2k2)2

× (s4 + 8ks3 + 20k2s2 + 16k3s+ 2k4)2 . (10)

It contains a zero eigenvalue, which signals the existence of
a steady-state solution, as should be happened without the
decay to the RC. Degeneracy of eigenvalues is introduced
as the transition to the RC is decreased.

3 Spectrometry comparison

We can verify our model against experiments: The pump-
probe spectroscopy measures the difference between two
beams, with

∆D = ∆εA
∑
n

An +∆εEE , (11)

being the signal measured. The symbol ∆ε s are the differ-
ences in dielectrical constants between pump and probe
beams of the corresponding pigments. By choosing the
pump and probe laser frequencies, we can selectively de-
tect the population changes of

∑
An or E. Summing over

equations (1-4) we know that the decay of the total pop-
ulation should be d(

∑
An)/dt = −k′A1 + k′′E. The mea-

sured charge separation rate is kE ≈ 3.57 × 1011 s−1 at
room temperature, and increases by 2 to 4 times from
300 K to 10 K depending on the species chosen [17,18].
The ratio of the forward and backward transition to the
RC is know to be about 25% [13] for an open RC, i.e.,
the RC BChl dimer (P) is reduced and the iron quinone
electron acceptor is oxidized; 40% for pre-reduced RC.
The back-trapping rate can, in principle, be estimated
from k′′/k′ = exp(−∆G/kBT ), with ∆G the free-energy
gap between A1 and E is estimated from their absorption
peaks, kB is the Boltzmann constant, and T is the absolute
temperature. However, the measured absorption peaks of
the excited RC are broad and imprecise [8]. We do not
know the absolute values of k′ or k′′ experimentally since
it is difficult to tune the laser frequency to distinguish
An from E. Nor do we know the transition rate between
Ans because transition between the same species cannot
be measured directly. Furthermore, at room temperature,
energy equilibrium within the antenna interferes with the
trapping process. Therefore we have taken k and k′ as pa-
rameters and fit the slow mode of fluorescence decay of
excited population observed, i.e. 200 ps [6,7,9]. Thus, the
absolute value of the largest eigenvalue should be about
3/200 ps = 1.5 × 1010 s−1. A computer code is written
to scan all combinations of k and k′, with k′′ = k′/5, for
the largest eigenvalue to be smaller than −1.5× 1010 s−1

between −108 s−1 to −1015 s−1. Interestingly, we find all
possibility happened at k = k′ and k > 6.97 × 1011 s−1

for k′′ = k′/5. Presumably, it is an extremum of P 4
16. At

the lowest k, we can match the required 200 ps decay
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Fig. 2. Numerically calculated pump-probe signal from equa-
tion (11) at k = 6.97×1011 , kE = 3.57×1011 , k′ = k, k′′ = k′/5,
∆εA = 1, ∆εE = 0. The initial condition is A5 = 0.2, A7 = 0.4,
A10 = 0.3, A12 = 0.1, while other sites are not excited at t = 0.

whose curve is plotted at Figure 2. If k′′ = k′/4, we ob-
tained k = 7.25× 1011 s−1. That k has to be equal to k′
might sound peculiar in view of the geometrical distance
between A1 and RC is less than the distance between RC
and other Ans [4]. However, the species for donor and
acceptors are different at these two cases. There are pos-
sibilities that the final hopping rate are still the same.

The transfer of excitation energy requires coupling
between the emitting molecule and the ground state
molecule. At an intermolecular separation involved be-
tween 10 Å to 100 Å, long-range resonance transfer of elec-
tronic excitation arises from coupling between the transi-
tion dipoles of the donor and the acceptor, which is the
Föster theory [19,20]. Since the BChl Qy dipoles lie in the
same plane, we have

k(R) ∝ 1
τF

(
R0

R

)6

, (12)

in which R0, measures transfer efficiency, is the Föster
radius. van Grondelle gave R0 = 90 Å for the BChl 875
to BChl 875 energy transfer and a fluorescence life time,
τF, about 3000 ps or slightly higher [21,22]. If a putative
separation distance between interacting BChl a dimers ≈
17.5 Å is used [4] we obtain an estimation of k ≈ 6.17×
1012 s−1. This number is about an order of magnitude
higher than the value obtained from our model. However,
the pairwise energy transfer is about 1 ps according to
our calculation [9]. On the other hand, from the value of k
obtained here, by fitting the 200 ps decay as well as the τF,
we estimated the Föster radius to be 26.8 Å. This result is
consistent within our model since we assume only nearest
neighbour transition. Further, since we put the population
at the antenna at t = 0 for our calculation,the rising time
is infinitely short, instead of having some instrumental
limits as observed experimentally. Although the light wave
length is much larger than the ring size, the ring still might
receive energy in localized form by energy transfer from
other rings as the initial condition we used in Figure 2.
Table 1 provides a list of all eigenvalues and corresponding
amplitudes obtained from our model. From the table, we
found that the largest eigenvalue mode is important, not

amplitude eigenvalue

−0.0070 −2.9707 × 1012

−0.0006 −2.7443 × 1012

0.0000 −2.6819 × 1012

0.0221 −2.4614 × 1012

0.0000 −2.3797 × 1012

−0.0200 −2.0143 × 1012

0.0000 −1.9275 × 1012

0.0124 −1.4844 × 1012

0.0000 −1.3940 × 1012

−0.0086 −9.5864 × 1011

0.0000 −8.6054 × 1011

−0.0159 −5.5606 × 1011

0.0000 −4.0829 × 1011

0.0034 −3.8570 × 1011

−0.0716 −1.4875 × 1011

0.0000 −1.0611 × 1011

1.0858 −1.5107 × 1010

Table 1. Eigenvalues for LH 1 for Figure 2. In a time-resolved
experiment the relaxation rates correspond to the lifetimes ob-
served from antenna fluorescence or bleaching kinetics.

only for its large separation from the other eigenvalues but
also for its corresponding large amplitude.

We have also introduced inhomogeneity, due to geo-
metrical distortion, into the rate constant. However, even
at large distortion, the basic character of the spectrum is
not altered considerably. If the criteria for k = k′ can be
established, we can further reduce the free parameters in
our model.

4 Conclusion

In summary, a physicist’s approach [23] of incoherent en-
ergy transfer within an antenna ring is taken by consider-
ing a two-parameter two-dimensional model. This model
differs from the one presented by Skála et al. The real-
ity might be somewhere between these two models. In our
model, we numerically found k has to be equal to k′. Fur-
thermore, we are able to calculate analytically some of
the eigenvalues and demonstrate explicitly that there is a
mode for decaying to the RC and other three modes. How-
ever, this result of mode separation depends upon the ex-
act number of unit involved in the ring. Therefore should
not be important. Perhaps we should interpret the find-
ing as: P 1

16, P 2
16, P 3

16 are redundant, since P 4
16 contains kE

which should be important. A ring of 16 units is huge. The
only purpose for such a large antenna is to accommodate
the RC.

Finally we remark that it is possible to extend a two-
dimensional random walk model of energy transfer into a
quasi-three-dimensional one, in view of the recent struc-
tural finding, with a recent result of random walk on
bundled structures by Cassi and Regina [24]. Further-
more, this theoretical result should be able to be verified
experimentally using its spectral dimension by measure-
ments involving diffusion processes such as time-resolved
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spectroscopy of nearest-neighbours energy transfer. Other
light-harvesting models and mechanisms are under further
investigation.
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